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Abstract

A rational transverse shear deformation higher-order theory of multilayered anisotropic plates and shallow shells is
developed for the solution of statical problems for two possible cases: cross-ply and angle-ply laminates. The theory
developed differs from existing ones by three features. Firstly, it is based on the hypotheses which are fully tied to the
physical and mechanical characteristics of the anisotropic layers. Secondly, the theory is built on a rational level of
difficulty, i.e. it does not add complexity in comparison with other known theories developed for more simple laminated
structure. Thirdly, the hypotheses take directly into account the influence of external subject to both normal and
tangential loads.

Relying on the specific approach for the derivation of hypotheses all the relations of the stress—strain state of an-
isotropic laminated shells are obtained. Using the variational approach the system of governing differential equations
and corresponding boundary conditions are derived.

The analytical solution for this system is given, and both special cases are stated, namely, cross-ply and angle-ply
laminates, for which such solution exists. The results of the calculations are given and compared with exact three-
dimensional and some approximate solutions available in the literature. The influence of the laminated structure upon
the exactness of results and the characteristics of stress—strain state is studied and discussed. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The investigation of anisotropic shells dates back to 1920s and the first recorded paper on this subject
was published by Shtayerman (1924). The use of anisotropic materials in the aircraft construction, later in
the rocket production and in many other engineering applications necessitated extensive studies and gave
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impetus to many publications in this field. The basic works by Ambartsumyan (1948, 1961, 1974) and
Lekhnitskii (1963, 1968) substantially contributed to the development of the theory of anisotropic plates
and shells. These works have already given a considerable attention to the study of the multilayered sys-
tems. The list of references is not intended to be a comprehensive one and the specific publications are
referred to because of their relevance to the present paper. We will also quote here some monographs
dedicated to the anisotropic and laminated composite plates and shells: Riabov (1968), Grigolyuk and
Chulkov (1973), Grigorenko (1973), Grigorenko and Vasilenko (1981), Grigorenko et al. (1985), Rikards
and Teters (1974), Librescu (1975), Christensen (1979), Bolotin and Novichkov (1980), Piskunov and
Verijenko (1986), Piskunov et al. (1987), Rasskazov et al. (1986), Bogdanovich (1987), Whitney (1987),
Vasilyev (1988).

Significant sources of information on different theoretical and computational models of the anisotropic
and laminated structures are the detailed surveys written by Grygolyuk and Kogan (1972), Grygolyuk and
Selezov (1972), Dudchenko et al. (1983), Noor and Burton (1989, 1990a), Noor et al. (1996), Reddy (1990),
Reddy and Robbins (1994) and Altenbuch (1998).

Most of the above mentioned monographs on this subject are based on the classical laminated shell
theory, incorporating the Kirchoff-Love hypotheses through the entire thickness. It is well known that, due
to the anisotropy and heterogeneity of the materials of different layers and the existence of layers which
exhibit weak resistance to transverse shear and normal deformations, the classical theory of plates and
shells, based on the Kirchoff-Love hypotheses, leads to substantial errors. The possibility of using a three-
dimensional (3D) theory is of limited use due to mathematical difficulties and the complexity of the lami-
nated systems.

As a result, numerous theories of plates and shells have been formulated in recent years which ap-
proximate the 3D solutions with reasonable accuracy. Such theories have been referred to as non-classical,
refined, and higher-order theories and others.

The beginning of the development of refined models links with the name of Timoshenko (1922) who took
into account the influence of the transverse shear deformations in the transverse vibrations of bars, and
Reissner (1945) for isotropic plates. Later on the main ideas developed in these works became useful outside
the scope of their original purpose, have gained recognition and were embodied in special terms like
“Timoshenko model” and “Boundary effect of Reissner”’.

The abandonment of Kirchoff-Love hypothesis (hypothesis of straight normal) and the use of the hy-
pothesis of straight line allowed to take into account the influence of the transverse shear deformations,
generalized through the thickness of the plate or the shell, homogeneous or laminated, as a refined factor.
When this approach is compared with that of exact 3D solution of the theory of elasticity, it becomes
apparent that this factor allowed significantly to refine the normal displacements of the coordinate surface
of the structure. However, the hypothesis did not refine the normal stresses which act parallel with this
surface since their law of change through the thickness remained linear.

The next step was the derivation of models based on the hypotheses where the distribution law of the
transverse stresses and shear deformations occurs according to the quadratic parabola law. Consequently,
for the displacements and normal stresses in tangential directions, with non-linear cubic distribution
through the thickness were obtained. The final results appear to be in good agreement with the 3D solution.

One widely employed way to build hypotheses of the refined theories is to obtain the distribution law for
the transverse shear stresses through the thickness of the layers by means of integration of the equilibrium
equations of the 3D theory of the shells when the tangential normal stresses are given. For the anisotropic
shells these laws become rather cumbersome. Usually they are simplified by maintaining only the main
physical and mechanical characteristics of the layers directly associated with the deformations in the or-
thogonal directions. This is equivalent to the case when the hypotheses are derived by integration of the
equilibrium equations for the cylindrical bending in each orthogonal direction. As this takes place the
relations between the hypotheses and the physical and mechanical characteristics of the anisotropic
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material are considerably violated. The conservation of such relations in full measure leads to irrational
complications of the theoretical model when the number of sought functions is increased considerably.

In this study the transverse shear model and the theory developed for it, oriented to solve anisotropic
laminated plates and shells are built on a rational approach where the relations are maintained between the
hypotheses for transverse shear stresses and the material characteristics of anisotropic layers. The theory
developed is given the name ‘‘rational transverse shear deformation higher-order theory of anisotropic
laminated plates and shells” (RTL).

2. Basic assumptions and classical model
2.1. Basic assumptions

We consider shells with anisotropic layers and which have one surface of elastic symmetry. The shell is
represented by a curvilinear orthogonal coordinate system x; Ox, which is parallel to the bounding surfaces
and surfaces of contact between the layers (Fig. 1). The axes of the curvilinear coordinates x; = const (i =
1,2) coincide with the principal lines of curvature. The coordinate x; = z defined along the normal to the
surfaces of the elastic symmetry of the layers and, accordingly, to the reference surface x;Ox, which is
positioned arbitrarily through the thickness of the shell. No limitations are placed on the thickness, rigidity,
number and/or sequence of the layers. The assumptions that the layers are perfectly bonded ensures their
deformation as a single unit without delamination. Thus, the structure of the shell through the thickness
can be arbitrarily defined and is heterogeneous.

It is assumed that the coefficients of the first quadratic form of a surface are close to unity, i.e. 4 =~ 1, and
the main curvatures are constant, i.e. k; = const (i,j = 1,2). The total thickness of the shell is small in
comparison to the radii of the curvatures (1 + k; ~ 1). These assumptions determine the areas of appli-
cation of the proposed RTL theory.

Loads are applied on the outer and inner surfaces of the laminate so that

i) =pf, s=1273 (1)

where p and p, are loads applied on the outer and inner surfaces, respectively, and the subscript s denotes
the corresponding coordinate axis. Consequently, the stress conditions on the external surfaces take the
following form
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Fig. 1. Geometry of a laminated shell.
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o =+4p" forz=a, (k=n) s=12,3 (3)

where k& denotes the layer number and # is the total number of layers. Since the layers are assumed to be
perfectly bonded, the continuity conditions for an arbitrary surface z = a;_; are given by

o) =l (static) 4)
ulf = u*=V " (kinematic) (5)

In the following derivations, summation is assumed over subscripts i, j =1, 2; s, =1, 2, 3, and p, ¢, f, g.
However no summation is implied over the index £ = 1,2,...,m,...,n. A subscript after a comma denotes
differentiation with respect to the variable following the comma and a superscript is expressed in brackets to
distinguish it from an exponent.

Considering “small” bending the strain components of the kth layer of the shell may be expressed as

2eM) =) 4 uj(k,> + Zkiju(f)

ij ij
Zel(.;() = uf];) + ué’fi) (6)

(k) (k)

€33 = Uj3
where ") (x;,z) and u§k> (x;,z) are displacements of the kth layer in the tangential x; (i = 1,2) and normal

z = x3 directions, respectively, and k;;s are curvatures of the shell. The displacements of the reference surface
(z =0,k = m) may be expressed as

u™ (x;,0) = u; ul" (x:,0) = w (7)
and its deformations and curvature must satisfy the following relations

&y = 3(uiy + wi) +kyw; Ky =—wy (8)

2812,12 — &2 —éni = kKo + ko — 2kinkis

©)

Kii2 — Ki2n = 0; Kni1 — Ki2p = 0

The generalized Hooke’s law for an anisotropic layer £ of the shell, where the surface of elastic symmetry
at any point (x;,z) is orthogonal to the normal, may be expressed as (Ambartsumyan, 1974)
(k) _ (k) (k) (k) (k) (k) (k) (k) (k)
ey = a0y a0y tai03 +a550)
(k) (k) (k) (k) _(k) (k) _(k) (k) _(k)
€y =y 0y Ty 0y +ay035 + a0

N (k) (k k) _(k k) _(k K _(k
eff = aiol] + ol +afol +alal)

2e) = ol + alll "
26 = alo) +alloly
26y = ag ol + a0y +agloy) +aglol)

where aﬁ), a(ll;), e ,agg) are the elastic compliance coefficients of the kth layer. Correspondingly, the stresses

can be expressed in terms of the deformations
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0(1](1) = A11 311 +A12 322 +A1% 323 + 2A16 el

Gg;) = A;’i 311 + Azz ‘322 + A23 ‘333 + 2A26 312)

Ug];) :A +A32 22 +A33 3% '+ 2’4

Ug) = 2‘444 623 + 21"[45 el3

oA = 248l 2458

ot = Al + A + A + 24
where 4%, 4%), ... 4% are stiffness parameters of the kth layer.

The geometrical equations (6) and the physical Hooke’s law (10) and (11) predetermine the geometrical

and physical linearity of RTL. The derivation of the non-linear RTL of the anisotropic laminated plates

and shells is a specific problem of the future. For some special cases of multilayered orthotropic shells a
non-linear theory was developed in (Verijenko, 1989, 1994).

2.2. Classical model

We assume that compliance coefficients for the shell material in the transversal direction are excluded, i.e.

(k (k) . (k) _ (k) _
‘113) =ay =0; a23) = ‘132) =0
K k k
a(33) =0; ag6) = a(ez) =0 (12)

k k (k (k
az(m) = ags) = a45) = a54) =0

In this case the kinematic Kirchoff-Love hypotheses
2 =0; ) =0;  i=1,2 (13)

follow from the Hooke’s law. It should be noted that the use of the hypothesis (13) in the general Hooke’s
law (11) allows to obtain the following expressions

(k) __ (k) (k) (k) (k) (k) (k)

oy =4Aje +4;en +24i5e),
(k) (k) (k) (k) (k) k) (k)

0y =4y 951 + 45, egz + 2‘4;6 € (14)
(k) _ 4(k) (k) (k) (k) (k) (k)

o1, =Aigey) +Axey +24g e,

and also an equality to zero of the transverse shear stresses

k

‘7(13> = ‘723 =0 (15)

However, an equality to zero of the transverse normal stresses, which are usually neglected in the classical
theory, does not follow from Eq. (13). That is why we specially introduce the statical Kirchoff-Love
hypothesis

o~ 0 (16)

Using the hypotheses (13) in the second and third expressions in Eq. (6) and, integrating them, we obtain
the classical kinematic model of the shell, displacements in the kth layer

u® = — wz; ugk) =w (17)

1

These relations do not contradict the conditions (5). Then substituting Eq. (17) into Egs. (6)—(8) the
deformations in the tangential directions for the kth layer may be obtained as
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)

ey = &+ Kz, iLj=1,2 (18)

where e,(jl-( ) = e](-f), &; = &, ki = Kj;. After substituting Eq. (18) into Eq. (14) we obtain the normal stresses in

the tangential directions expressed in terms of the deformations of the coordinate surface.
O'Y;) = Agl?gll +A§](2)822 + 2145];)812 + (Asli)Kll +A§](2>K22 + ZAY;)K”)Z
o = A en + Ay en + 245 e + (A5 k1 + A K00 + 245 Ke10)2 (19)
(7%) = Ag?ﬁn +A§?822 + 2A(6?812 + (Ag?lcn +A;§)K22 + 2Aé?l€12)z
The transversal terms of the stress tensor, according to Egs. (15) and (16) are equal to zero. However, they
can be determined from the equilibrium equations of the 3D theory of elasticity of the shells. In these

expressions we consider the tangential terms to be known and expressed in accordance with Eq. (19). These
equations (Novozhilov, 1962) we will write for the kth layer of the shell as

o® 4 ‘7,(-;)3 =0; 0%?,3 + Jg{.)s - ki'ag‘{) =0 /=12 (20)

i

From these equations and condition (2) on the inner surface of the shell z = ay we obtain the transverse
shear and normal stresses for the kth layer

ag‘):—pg—/ oidz, i=1,2 (1)
ag
k _ : k k
ol =y — [ (o)~ ko) dz (22)
ap

The expressions for the outer surface of the shell z = a,, using conditions (3) and (4), may be given as

p;+p;:/ oldz, ij=12 (23)

ay

pr 4ol = [ (ol kel (24)
ay

which are the equilibrium equations of the shell in the projections on the axes x; and x; = z, respectively.
Next we introduce the integral characteristics of the stresses, namely the internal forces and moments

[Mf’%/} = / ' [O-fjk)7al<jk>z} dZ’ Lj= 172 (25)
ap

Then the equilibrium equations (23) and (24) can be transformed into

Nyj+ (" +p7) =0 (26)

Mii; = kyNig + (p3 + p3) + (Blan + prja0) =0 i,j=1,2
Eq. (26) constitute the system of equations of the classical theory of the multilayered anisotropic shallow
shells. In the following, this theory will be considered as a special case for the developing non-classical
theory.
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3. Transverse shear stresses and strains
3.1. General form of transverse shear stresses

The expression (21) gives the transverse shear stresses in general form. In order to solve specific problems
of the stress—strain state of the shell it is necessary to derive expanded expressions. They are also essential
for later use as an integral part of obtaining the hypotheses of non-classical theory of the highest ap-
proximation.

Next we substitute the relation (19) into the expressions (21) and (23). Considering the case when i = 1
we obtain the following expressions

k — : k k
ol =pi — [ (@l + o)z

a0
z

=—p, — {811,1/ Aﬁ)dz—i— 82241/ A({? dz+ (2611 + 811,2)/ A(llé)dz-i- 82242/ A(Z?dz
ag

ap ap agp
-‘1-281272/ Aé?dz} — [K“’]/ A(l]?ZdZ"i‘Kzzyl/ A§];>ZdZ+(2K12,1+K1142)/ Ag?zdz
ap ap ap ag
L) L)
+K222/ A262d2+2l€12_’2/ A662d2:| (27)
ap ao

an

p; —|—pr = — |:81111 / AY?dZ + €221 / AYQ dz + (2812'1 + 8112) / Ag? dz + 822"2/ Ag;) dz

ag agn ap ag
=+ 281242/ A(ﬁ?ZdZ:| — |:K311y1 / A(lkl)ZdZ + K21 / A(lg)ZdZ + (2K1271
ap ap ap
=+ K11>2) / Al()ZdZ + K22 / Ag];)ZdZ =+ 2K1212 / Aéké)ZdZ:| (28)
ag ap ao

Let us introduce the following distribution functions of the stress terms through the thickness
k k k k : k k k k
05 15 70 8] = [ [ s s a8
)

A5 R R R = / 40 a4l A Al|zaz
ap

1

The following constants, characteristics of the layer rigidity, correspond to these functions

Bas B B B = [ Al AR A5 ] ez
o (30)
[Cit; Cio; Cig; Cog) :/ [Af.i‘); Ay); A Aé?}ZdZ

a0

In Egs. (29) and (30) we assume that i = 1,2. From expression (28) we can derive any term of the defor-
mation, for example

1
By =~ g [(Pf +p7) + e21Bia + (28121 + €112)Bi6 + €228 + 2€122B66 + K111C11 + K221 Cio
1

+ (2121 + €22.1)Ci6 + K222Cr6 + 2K12A’2C66] (31)
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Now substituting Eq. (31) into Eq. (27) the final expression may be obtained

w_ A (A w B m ®) 316
013 =P B, P _B“ - — |€221{J12 _311 i)+ Qe teng) | S — f11
B B C C
+ &xn <f2(§) ——26f11 > + 2¢e12 <f6(§) ——66fu > +K1141( ®_ llfu > + K22,1<Fk - 12f11 >

C C C
+ (2K121 +K11.2)( " 16fn ) +’€22,2< Fy — 26f11 ) +2’<12,2< Fy — 66f11 ﬂ (32)

The stresses 6(2];) can be obtained in a similar manner. The distinctive feature of the expressions for the

general form of the transverse shear stresses is that they satisfy the loading conditions on the external
surfaces and the interface conditions on the contact surfaces of the layers when the coordinate surface is
positioned arbitrary through the thickness of layers.

3.2. Rational form of transverse shear stresses

In the derivation of the non-classical theory the influence of the transverse shear deformations and
corresponding transverse shear stresses must be taken into account. The expressions for the transverse
shear stresses may be used as a basis for the hypotheses of this theory. They fully reflect the physical and
mechanical characteristics of the anisotropic layers. However, each term gives rise to new sought functions.
Their number appears to be unnecessarily large and leads to the creation of a complicated theory. Never-
theless, a “‘rational arbitrary rule” may be employed to simplify them and make the theory rational. For the
purpose of simplification and without changing the principles of the theory, we will represent the expression
(27) for the transverse shear stresses as a sum of items, viz

5
EI; 2613”1 (33)
m=1

Each item here represents a part of the stress which is associated with some rigidity characteristics of the
material for the layer k. We will connect the tangential load p; with items which contain the deformations
of the coordinate surface arising directly in its direction. The above mentioned items can be written as

k _ k k
U§3)1 =P - (811~1f1(1) + KUJFI(]))

ol = —(enafis + K21 Fy))

o = =[(ena + 26048 + (k112 + 261, )FlY (34)
133 — >11,2 12,1 )/ 16 11,2 12,1 )16

ol = —(enafiy + KnaFy)

k k k
s = —2(enafyy + K2k
®)

In accordance with the representation of the stress o,y as a sum of five items we replace the equilibrium
equation (28) with five relations, which taken together satisfy its conditions. They are
i +pi = —(enaBu +x11.Cn)
€021B12 + K20,1Cl2 =0
(e112 + 2€121)Bi6 + (K112 + 2K121)Ci6 = 0 (35)
€222B26 + K22Cr6 =0
122B66 + K122Co6 = 0



V.G. Piskunov et al. | International Journal of Solids and Structures 38 (2001) 6491-6523 6499

From Eq. (35) the following expressions can be found

ptp C11>
e =—| ——+Kn15—
( By By
. . C
21 = —K»ni15—
B . (36)
16
(e112 + 2e121) = — (K112 +2K121)B
16
G — —ic Cys c y Ces
22 = —Kn275—) 122 = —Kpp—H5—
B Begs

Substituting them in Eq. (34) and summing according to Eq. (33) we obtain the following expressions for
the transverse shear stresses for the kth layer of the shell

*) 1, c c C
O_(llg) :PTBI—I Py (BI—I— > - K11,1< o 11f11 > — Kn1 {(Fg) +2F6<§>) - ( 12flz 66f66 )}
11 11
C C
s (B - S 0) s (1) - S22 (37)

In a similar manner we have

(k)
C A C C
agg) =D, 222 +p (J;ZZZ > - K22,2< Ay *ﬁfzz > — K112 {(Fz(f) +2F6(é{)) - (21f21 +2ﬂf66 )}
C C
- 3K22,1( 2(? _B_j:f26 ) - K11‘1( w_ mflg ) (38)

Next we introduce the following distribution functions of the transverse shear stresses through the thickness
of the laminate

(k)
+ :fl_l. + fzz

Pk B’ P = By
(k) (k)
Ji1 /e
=2, =12
Py = By, Doy By
C C
k k 1 k k 2
(/751) = F1(1> - fll ; (P(zl) = Fz<2> __fzz
C C
k k k 12 66
‘sz) = (Fl(z) + 2Fe(6)) - ( f12 2_f66 ) (39)

k k k Cyy C66
(P(zz) = (Fz(l) + 2F6(6)) - ( S+ f66 >

X n  Cis k o Co
§0(13) = 3<F1(6) - f16 (/’<23) =3 F2(6) - _f26

C C
k k 26 k 16
(P(14) = ( ( > f26 ) (Pg4) = <Fi(6> ](16 )

Substituting Eq. (39) into Egs. (37) and (38) the final expressions can be found
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k - k k k k

0'%3) =D Pu +P1+<P1+k - (Ku,lq’(n) + K2241€D(12> + K11,2€0(13> + K22,2(/)(14)) (40)
k o k k k k

0';; =Dy Py +Pz+€0z+k - (K2272<P(21) + K1142€D§2) + K22,1€0§3) + K11,1(P(24))

The derived expressions do not contain terms with the tangential deformations of the coordinate surface as
compared to earlier obtained expressions (32). The influence of the deformations is taken into account
indirectly by the distribution functions (39). The expression (40) satisfies both the conditions on the external
and intermediate surfaces of the shell. They contain less number of items (6 each instead of 11) and con-
sequently will give rise to a less number of sought functions during the derivation of the non-classical
theory. We take them as a basis for the further derivations, first of all, for the determination of the
transverse shear strains.

3.3. Transverse shear strains

Using Eq. (40) the transverse shear strains can be obtained from the Hooke’s law (10) as

(k k) _(k 0 (k)
2913) = ass)(’ls) + a(54 ‘7(23

k
= - [Kll 1(9011 955 + ‘P24 “54) + K 1((P§2 ass + (/’23 a54 ) + K, 2(901%)"55 + 9022>“§4))
+ K222(9014 ass + 4021 a54 )] + (P oy + P q’lk)ass + (py 03 + Py q’zk)a54

(k)

(41)
k k
2923) agm) 023 + a45 013

k
= - {K222(9021 a44 + 4014 a45 ) + K 2(@22 a44 + 9013 az(ts )+ K221(€023 a44 + 4012 afw))

+ K, 1(4024)"44 + 9011)"45 )} + (py 9y + P (sz)a44 + (py ¢y + P (Plk)afts)

In Eq. (41) through the thickness distribution functions of the transverse shear may be defined as

K K (k K (k
v = (e o)
lp(k) ((Pzg a44 + (Plr a45 ) (42)
r,s=1,4;2,3;3,2;:4,1

k — k k — k
5”25) = P as5;5 ‘1”56) = (P1+ka55§ lP§7) = (P a54; 'ng) = (P2+ka54

(43)

k — k k — k
q’;s) = @y a4s; lpge) = @) das; %7) = (P Aa4; 1p(28> = (s

These functions establish the full tie between the transverse shear strains and the physical and mechanical
characteristics of the anisotropic layers. Thus Eq. (41) takes the following form

2el) = w1 )+ ke P A ki P o P o Y ety P+ pr P

) (44)
2e%) = k111 Py, + K1 5y + k2 Why + ka2 WY+ py PR + pi Whe + py ) + py P

The expressions for the transverse shear strains are important for the derivation of the non-classical higher-
order theory.
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4. Derivation of the non-classical theory
4.1. Hypotheses and displacements

In deriving a non-classical higher-order transverse shear theory we assume that transverse shear strains
are not equal to zero, that is
268 £ 0; i=1,2 (45)

However, we assume that the transverse normal deformations and transverse normal stresses, as in the
classical theory, are equal to zero

e(;;) =0 O’g;) =0 (46)

We are not changing the hypothesis for the normal strains and it is equal to zero. Therefore, the normal
displacements are constants through the thickness of the laminated shell and are equal to those displace-
ments on the reference surface

ugk) =u3(x;,0) = w (47)

Using Eq. (44) for the transverse shear strains and the strain—displacement relations (6), we can find more
accurate components of the tangential displacements. From the second expression in Eq. (6) we obtain

Uy = 2e) — ) (48)

and after integrating of this relation we have

i —u [ el )z (49)
We introduce the following distribution functions of the tangential displacements

lpg):—/oszfdz, i=1,2, p=1,2,...,8 (50)

Using these functions the expression for the tangential displacements may be written as

k k K K 0ok Bk k
Wl =y — (waz+ kgl + K2241‘p(12> + K11,2¢§3> + Kzz,z‘//(m) +p; ‘//(15) +pive + P Uiy + piviy)

k k k k k — 4 (k k — 4 (k k
) = uy — (waz + KPSy + Ko WS KPSy KanaWsy oy + P + v + piuy)

(51)

where «;; can be determined from the second relation in Eq. (8). The distribution functions defined in Eq.
(50) allow us to satisfy the continuity conditions in between the layers for the tangential displacements when
the reference surface is positioned arbitrary through the thickness of the shell.

4.2. Relations for the non-classical theory

First two terms in the expression (51) contain unknown functions u;, u,, w. These items are from the
classical theory whereas the rest of items are new. They take into account the influence of the transverse
shear strains on the tangential displacements. One can be sure that the highest degree of the polynomials,
which results from the distribution function (50) written in an explicit form, equals three. Thus, the tan-
gential displacements are non-linear through the thickness of the shell.
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In order to derive relations of the non-classical theory we retain first two terms in the expressions (51).
For the next four terms we introduce new unknown functions of the reference surface using the following
irreversible relations

(K11 Koos K Kol = [y %25 735 X4l (52)
Additionally, we introduce the following relations for the functions of the given external load

[prs pis pas Pyl =tses 263 275 %] (53)
Replacing the functions in the relations (51) in accordance with the relationships defined by Egs. (52) and
(53), the expression for the tangential displacements may be written as

Ek):u,-—wjz—xplpip; i=12, p=12,...,8 (54)
In this expression summation is assumed over “mute” index p. Items containing this index take into ac-
count the influence of the transverse shear deformations as a result of the effect of the transverse shear
stresses. The last four terms (p = 5,6,7,8) account for the direct effect of impact of the external load.

The tangential displacements in the form of Eq. (54) including the expression (47) for the normal dis-
placements represent the non-classical kinematic model of the shell. The classical model may be obtained by
specifying the material properties. In this case the compliance coefficients responsible for the shear must be
equal to zero, i.e. the last relation (12) is satisfied, and also we have y,, = 0.

Let us now obtain the components of the strain tensor for the kth layer. Taking into account the
kinematic model (47) and (54), the tangential components in Eq. (6) may be written as

! (55)
=iy +ws) — Wy +wi)z = (W + 2] +hyw  i,j=1,2; p=1,2,...,8
The transverse shear strains are given by
2ef = uf v ull] = ul twi= (w0 twi= g0y i=12% p=12,....8 (56)

The strain due to the normal compression is equal to zero as hypothesis
0 (57)

The components of the stress tensor can be determined by substituting the strains (55)—(57) into the
Hooke’s law (11) as

o = A+ 24
= Aﬂ’?(u,-,r — Wiz — Xp_,l-lpf;) + kyw) + Ag? {(141‘2 +uxy) = 2wiaz — (XP,M? + Xp,ﬂ//(z?) + 2k12w}
Aol
= Al 24
= Aﬁé‘)(u,-y, — Wiz — ijlpi,k;) + kyw) + A(ﬁ? {(“1,2 +up1) — 2wz — (Xp,zlﬂ(lll? + Xp,ﬂﬁ(z/;)) + 2k12W}
i=1,2 r=i; p=1,2,...,8

k Kk Kk
0'(13) = Xp(A(SS)!//Ep) Jr1‘1(54)‘//31,))
k 0k 0k
6(23) = Xp(A‘(ﬁ)‘//(lp) +A‘(14)l//(2p))
p=12..,8 (59)
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oty = A e + 24l el
k
= A (i — warz — 2, 0% + kw) + AL |12 + 21) = Waoz — (LWL + 1,0 W8)) + 2kiow
i=1,2, r=i; p=1,2,...,8 (60)

It should be noted, that in accordance with the hypotheses (46) the transverse normal stresses ag;) equal to
zero. The Hooke’s law can be used to find these stresses in the form of Eq. (60). However, they do not
satisfy the equilibrium Eq. (14) and the conditions (2)—(4). The expressions (60) represent only that part of
these stresses, which results from the tangential components e(k) of the strain tensor. These stresses actually
arise due to the Poisson’s effect. The stresses 0(33), which satlsfy the given conditions and the equilibrium
equations, can be obtained from the expression (16). It is necessary by first to find from Eq. (21) the refined,
comparing to the expressions (58), transverse shear stresses a@ taking the expressions (2) for the tangential

stresses a( ) into account. The refined transverse shear and normal stresses derived in such a manner will
now correspond to the results of the non-classical theory just as earlier derived stresses GQ in the form (40)
corresponded to the results of the classical theory.

In the subsequent study of the stress—strain state of the shell it is necessary to obtain the set of governing
equations and boundary conditions expressed in terms of the unknown functions of the reference surface u;,
w, %, (i=1,2; p=1,2,3,4). As this takes place, the functions of normal z are assumed as known and they
are distribution functions of the stress—strain state components through the thickness of the multilayered
anisotropic shell. These distribution functions are defined in a form which facilitates the satisfaction of the
conditions on the external surfaces and the continuity conditions in between the layers when the reference
surface is positioned arbitrarily through the thickness of the shell. Clearly, the governing equations are
independent of the thicknesses, stiffnesses and other properties of the layers.

An important feature of the proposed non-classical model of the stress—strain state is the relation of its
expressions with physical and mechanical characteristics of the anisotropic shell layers.

It should be noted that the association of the relations of the classical model (theory) with the physical
and mechanical characteristics of the anisotropic material is solely by the stiffness parameters of the
Hooke’s law which ties together the stresses with the transverse shear strain. As this takes place, the dis-
placements and the associated deformations are purely geometric relations.

In the proposed non-classical model the displacements (51), (54) and deformations (55) contain, in
addition to the classical model, terms which take into account the influence of the transverse shear as well as
their distribution functions through the thickness. These functions depend on both the stiffness charac-
teristics and the shear compliance in the orthogonal directions.

This is due to the relationship between the physical and mechanical characteristics in the expressions for
the transverse shear stresses (40) and transverse shear strain (44). These relations form the basis of the
derivation of the shear deformations and displacements. Next, this association spreads to the normal
stresses (58) and other relations of the non-classical theory. The availability of this relationship makes the
proposed model different from the non-classical models in which the hypotheses of transverse shear stresses
and their distribution functions are based on purely geometrical considerations, e.g. (Ambartsumyan,
1974), the models and theories of the first order shear deformation theory — FSDT.

5. Variational equation, equations of equilibrium and boundary conditions

5.1. Variational equation

The equations of equilibrium and the boundary conditions may be determined using the Lagrange’s
variational principle
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U —-8H =0 (61)
where U is the variation of the potential energy of the deformation and 6H is the variation of the work
done by the external forces.

For a laminated shell we consider the tangential and normal components of the stress and strain tensors
and then the variation of the potential energy may be given by

U = / / / [ogf)5e§f) —|—2og)56,(§) + og;)?iegg)}dl/, iL,j=1,2 (62)
v

Substituting strains from Egs. (55)—(57) into Eq. (62), we can express the variation of the potential energy in
terms of the displacements given by Eqgs. (47) and (51), as

8U = / / { / D (B — 2wy — Wi, + kydw) + o (U115, dz} ds,

i,j=12; p=1273/4 (63)

where S is the two-dimensional domain of the shell surface. It is noted that the variations of the known
functions which have subscripts p = 5, 6, 7, 8 are equal to zero. In the following derivations we will replace
index p with index f.

Using a notation similar to that of the classical theory we may now consider the following integral
characteristics of stresses

Nij:/ aff) z; / akzdz
ay

r “ r "k k 64
Ni§f> :/ thw;f dz; o —/ 653)'10r(tf)dz )

0 0

i,j=12 r=i f=p=123,4

Substituting (64) into Eq. (63), and using Ostrogradsky—Gauss theorem, we obtain the expression for the
variation of the potential energy as

oU = // ,”51,{, ,j,j , )Sw ( 1// _|_Qlf )8/(17} dS+/ [(Nhh&/lh —|—Nh/5u1)

L
+ (M + 2My1)Sw — Myydw — Niy 87 — Ny ’67&”} dL + [My 3wl (65)

where 4 and / are normal and tangent to the boundary L of the domain of the shell, respectively. For the
forces on the boundary of the domain it was assumed that 4 and / are equivalent to i and j in Eq. (64).
The variation of the work of the external loading we obtain as

SH = //@56u§1)+p?5“§")+p55u3 + py dug’)ds
N
_ / / {7 [8us — agdw,; — vy (a0)d1,] + i 61; = andw; — i (@)d,) + (b3 + pi)ow} ds
; (66)
://{(PF + )31 + [(pya0 + plan) + psldw — [ iy (o) + pi vy (”")]Slf}ds
S

—/[(p;awp;an)aw]dL =12 f=123.4
L
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Substituting the variations (65) and (66) into Eq. (61), we derive the following variational equation
/ /S {[ij,.f + (o7 + pD)du; + My iy — kyyNy + (p a0 + plan + p3)|dw — NS+ 0 + pr lﬁgfl’) (ao)

+p,+l//,(;)(an)]xf}ds — / {(N;,h?)u;, +N;,,5u/) + [(Mhh,h + 2Mh1,/) + (p;ao +ph+a,,)]8w — M,,hSWJ,

L

— N8 — N,Eff)SX}D}dL — MW =0 ij=12 f=1234 (67)

5.2. Equations of equilibrium and boundary conditions

The variations of independent functions u;, w, y, which determine the displacements in the shell, have
arbitrary values everywhere over the domain of the shell excluding the boundary and, consequently, they
cannot be equal to zero. Equating the multipliers of the variations in the first integral of Eq. (67) to zero, we
obtain the system of equations of equilibrium of the shell as

Nij+ (o +p) =0

Mij,ij — kijNij + (p;l-a() +pl+la,, +p3) =0

N7+ 0 + [ vy (ao) + p iy ()] = 0
Lj=12 f=1234

(68)

The boundary conditions follow from the boundary integral in the equation (67) and they may be written as
follows

e kinematic conditions

u, = 0; u = 0
w=0; w;=0 (69)
1 =05 g =0

e corresponded static conditions

N =0; Ny =0
My + 2Miy s + (py ao + py a,) = 0; My =0 (70)
N =0 N o

where f =1,2ifh, I=1,f=3,4if h, [ =2.

There are eight boundary conditions, which is the same as the order of the system of equations (68). A
detailed interpretation of the boundary conditions may be given as in Piskunov et al. (1987, 1993) where a
simple case of isotropic laminated plates and shells is considered.

It is clear that the first and second expressions in Eq. (68) both are the equations of the classical theory
(26). The rest of the equations take into account the shear strain effect. Eq. (68) constitute the system of
equilibrium equations of the non-classical higher-order (third order) theory of the anisotropic laminated
shallow shells. And Egs. (69) and (70) are the boundary conditions for this system.
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6. Generalized forces and moments and system of governing equations

6.1. Forces and moments

Let us rewrite the integral characteristics of stresses given by Eq. (64) and use the expressions for the
stresses for the kth layer given by Egs. (58) and (59). Then we have for the tangential forces

Ny = Bii(us, + kiyw) + Big(u12 + uay + 2kipw) — Crywye — 2Ci6w 10 — (B(lllp) +B§26p))xp,1
2 1
- (Bgzp> +B§6p))Xp,2
Np=Ny (71)
Ni> = Big(ui, + k; B 2kiw) — Cigwr — 2C, — (B\'Y) + BV
12 = Bis(ui, + kiyw) + Bes(u1 2 + ta1 + 2ki1ow) i6W,ir ssW12 — (Byg + Beg )Xpl
2 1
- (Bgép) + Béép))xpl
Ny1=Ni» l:1,27 r=i
for the moments
My = Cii(ui, + kiyw) + Ci(ur12 + uzy + 2kiaw) — Dyyw, — 2D 1w 12 — (Cﬂ‘” + Ciép))}{m
2 1
- (Cizp) + C§6p));{p,2
My=»M (712)
My = Cig(u;, + k; C 2kiyw) — Digw sy — 2D —(C¥ + By,
12 = Cis(ts, + kyw) + Coos(t12 + tn1 + 2k1ow) i6W ir s6W 12 — ( 16 1 Ces )Apj
2 1
- (Césp) + Céap))lp,z
M21‘:,M12 l:1,27 r=1
for the higher-order forces
NS = BY (uy, + kyw) + B (w2 + uny + 2kiow) — Cow — 268w — (DY) + D(llf,fzp))xm
2p) (111
— (DY + DI "),
NN
N(lf) B( (u;r + k,,W) +B66 (u1,2 +uyy + 2k12w) _ C,-(6lf)W,ir . 2Cééf)w‘12 o (D(116f117) +Déléf2p))xp,1
— (W 4 DYy,
szj‘—le) i=1,2; r=i
(73)
and for the shear forces
(11) . (1/'117) (1/2p)
= 1, (RY'" + R

2f 21 22

In Egs. (71)(74) we have f =1,2,3,4, p=1,2,...,

8, and we also assume summation over / and p.

The equations for the forces and moments include the integrated stiffnesses of the laminated shell given

by
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B, = / AWdz;  Cp = / AW zdz
ap ag

a, " a, .
By = [Capupan o= [Cagaga
ao

ap

Du= [ apRan pygr = [Cagulula: 75)

ap ao
an
rft k k
S
ap

q,s=1,2,6; mn=4,5 rit=12; f=1,2,3,4 p=1,2,...,8

6.2. System of governing differential equations

Substituting expressions for the forces and moments (71)—(74) into the system of equations (68) we
obtain the system of governing differential equations expressed in terms of the unknown functions. The
system may be written in the following form

[D{U} = [Dx{X} + [FI{P} (76)

where [D] is the matrix of differential operators over the vector of unknown functions of the reference
surface, which is given by

(U= {uswiz,}', i=1,2 p=1,2,3,4 (77)
[Dy] is the matrix of differential operators over the vector of known functions defined by (53) and given as
{x}={z}. p=5678 (78)
and [F] is the matrix of differential operators over the vector of given loads which is
T
{P}=1{r":ps} (79)
Finally, the left part of the equation (76) may be written in the following form
D] [Dp] [Di] [Dy]] [m
[Dar]  [Dn]  [Dan] [Dy] | } ua
DH{U} = 80
PRUI= VD] (D] [Ds] (D3] | | w (50)
(D] D] [Dys] (D] | 2

In order to multiply the matrix by the vector it is necessary to expand it over the index f =1, 2, 3, 4 and
make summation over the index p =1, 2, 3, 4

[Du] =Bu(- ) +2Bis(- ) 1o+ Bes( )
[Dio] = [Dar] = Big(-++) 1y + (Bia +Be)( -+ ) 12+ Bas( -+ ) 2
(D] = Boa( ) 3+ 2Bas( ) 15+ Bes( -+ ) 1y
[D13] = [Dsi]
= —{[Cn(' )+ (Cra+2Cs6) (- +) 5 — (Bukin + Buakay + 2Bigkin)( -+ )] |

+ [BCi6( ) 11 + Cos( -+ +) 55 — (Biskir + Baskas + 2Beskin) (- - )]z}
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[D23] = [D3o]
= *{[sz( ) T (Cra+2Cs6) (- +) 4y — (Bazkan + Buokiy + 2Bagkin) ()],

+[BCo( )2+ Ci6( ) 11 — (Baskaz + Bigkin + 2Beskiz) (- )]1}

[Dss] = [Dur(-++) 1y +Dia( ) ;g +2D16(- -+ ) o) 1y + 1D22(+ ) ;p +Dar(++) 1y + 2D26(+++) 12] 22
+2[Di6(+ ) 11+ Das(+++) 3n +2D6s () 1) 12 — 2[(k11 Cri + k22Cra + 2k12Ci6) () 3
+ (k2Cx + ki1 Cor + 2k12Ca6) (- ) 39 + 2(k11Ci6 + k22Cos + 2k12Cos) (- -+ ) 12
+ ki (ki B + kaaBay + 2kizBis) + koo (kaaBaa + ki By + 2ki2B2)
+ 2ki5(k11Bi6 + kooBag + 2k12Bee) (- - )]

1 2 2, 1 2 1 2,

[Dy] = [Dn] == [ (B + B ) (- )+ (BR + B () + (BE + 288 + B ) () 1)
2 1 1 2, 1 2, 1

(D3] = [D2] = = [ (B + B ) () + (B + BE) () + (B + 285 + B ) () 1)

[D3p] = [Df3]
— [(Cﬁm +C§§”))("'),1 4 (Cgm +C§2p))(“')42} L+ [(Cgm +C§é”>)(-..)42
+ (cgm n Céép))(“')'llzz n 2[(@? n cg;’>) (), + (C%m n Céé’”)ﬂ--),z} )
= [ (B + B ) ke (B + BE) + 2 (B + B )| () = [k (B + B

+ k2 (Bgzzp) + Bélép)) + 2k (B(226p) + Bélep))} ()2

111 112, 211 212, 212, 211
[D/),] - [(D(nf i@ "‘Dgéf p)) + (Dgsj 7 +D(66f p))] ( : '),11 + {(D(zzf 7 "‘Dgéf p)>
n (Dgléflp) n D&ﬂp))} ()t [(Dglzﬁp) + 2Dl Déléf?p))
211 212, 211 212, 2f1 112, 111
+ (D 4208 4 DY | () = (RE™ + RYY + R+ R (),
fip=12734 (81)
It is noted that submatrices [Dy;| and [Dy,] can be obtained from submatrices [D;,] and [D,,] by replacing

index p with f.
The right-hand side of Eq. (76) is formed by two terms. The first item has the following form

[Dlp] -
[D2p] pi*
[Dx[{X} =— Dy T = | s f=1234 p=5,6,7,8 (82)
P
D, Py
v

where the submatrices [Dy,] ... [Dy,] are defined in the expressions (81).
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The second item is given as follows

—(-+9) —(--) _ _ _ ii
_ _ _() _() _ l_

FIPE= 1 ), ay al,  al), (]2 (83)
V@) Y@)t) v@)() P@)() - };

f=1,2,3,4

The total number of equations in the system (76) is equal to seven. The total order of the equations is equal
to 16 and corresponds to the number of boundary conditions expressed by Eq. (69) and are equal to eight.

7. Analytical solution and special cases
7.1. General case

Let us investigate a possibility of obtaining an analytical solution of the system of differential equations
(76). It is apparent that this solution is only possible for the simplest cases. We will consider the case of a
supported shell with a rectangular plan view. The Navier approach can be used in this case by expanding
the applied loads and unknown functions in double Fourier trigonometric series. For simplicity, from here
on, we will introduce the following notations for the series:

. mm . mn
sin—ux; = sin 4,,x; = S,; cos—x; = cos A,x; = C,,

“ o 84
. W . n® (84)
SIn—x; = siny,x; = Sy; CO0S—xy = Cos Y, x; = C,

ap a

We consider two cases of the shell support, for which Fourier series are formed variously depending upon
the boundary conditions.

The first case is a hinged movable (free) support, when the edges of the shell can freely move along the
normal to the edges. Tangential displacements along the edges are not permitted. The boundary conditions,
accordingly to Egs. (69) and (70), are the following

for X1 = 0; ay Uy = 0; N11 = O; w = 0; M“ = 0; 1(32) = Xf) = O; Nl(:l) :Nl(fl) =0

85
for Xy = 0; ay Uy = 0; N22 = O; w = O; M22 = 0; X(ll) = ng) = O; NZ(?) = N2(§4) =0 ( )

The second lines in the conditions (85) model end diaphragms on the corresponded edges, which prevent
the transverse shears in the planes of the ends and allow the shear along the normal to the edges. Various
variants of such diaphragms and their modeling using the boundary conditions may be given as in Piskunov
et al. (1987, 1993) for the isotropic shells.

In order to satisfy the conditions (85) the following expansions in the series are taken

u = Z Z UtyinCSs uy = Z Z UsynSiC; w= Z Z WoSinS
[Xl; )(2] = Z Z[len; XZmn]CmSn (86)
[Xaé )64] = Z Z[Xibnn; X4mn]San
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Correspondingly, expansions for the loads are as follows
PE=2 D PGS PE=D 3 PiuSuCi p =20 P, (87)

The second case is a hinged support when the shell edges are not free to move in the normal directions to its
contour. Tangential displacements along the edges are possible. This is the case of the hinged immovable
support of the shell. Here the boundary conditions, according to Egs. (69) and (70) are as follows

forx;, =0; a:u; =0; Njp=0; w=0; My =0; 13 —74 J=0; NIV =NV =0

(23) (24) (88)
forx; =0; ay:uy,=0; Nyy =0; w=0; Mp=0; )(1 *)Cz *07 sz =Ny =0

In satisfying the conditions (88) we will use the following expressions of the unknown functions in Fourier

series
= Z Z UlmnSan; U = Z Z U2mnCmSn; w = Z Z VanSmSn
71v X2 Z Zleny XZmn mSn (89)

737 X4 Z ZX3WH77 X4mn an
Corresponded expansions for the loads are as follows

R ID WA S 3D WERTAIN S D WACES (%0)

The expressions (86) and (87), (89) and (90) contain amplitudes of sought functions Uy, W, Xpms and the
load functions P, , Py .

Expansions of the sought functions and the functions of loads for each case of the boundary conditions
can be substituted into the expressions for submatrices (81) of the system of differential equations (76). The
object of such substitution is to obtain the system of algebraic equations for the amplitudes of sought
functions when the load amplitudes are known. In doing so, the trigonometric multipliers for each forming
equation must be retained. However, one can make sure that none of considered variants of expansions
does not allow to obtain a system of equations which could be free from the trigonometric multipliers. The
trigonometric multipliers cannot be canceled and the system of algebraic equation cannot be formed.
Consequently, an analytical solution in Fourier series for the considered equations is impossible. Therefore,
it is impossible to obtain the analytical solution for an anisotropic shell of arbitrary layered structure
through the thickness even within the framework of the classical theory. This fact is known, for example,
from Savoia and Reddy (1992), Noor and Burton (1990b).

The problem of canceling terms of one or another of generalized stiffness characteristics and obtaining of
the system of equations, which could be solved, must be considered in connection with the structure of
laminated shell, and also, with geometry of its surface. Next we consider special cases of the structure, for
which the solution is possible.

7.2. Analysis of special cases: cross-ply and angle-ply laminates

There are two significant special cases of the structure of laminated plate or shell in practice. The first
case is cross-ply laminated structure (see Fig. 2a) formed with layers reinforced at angles 0° and 90° to the
orthogonal axes of coordmate x; and x,. The layers of shell with such a structure are orthotropic. The

stiffness parameters Als, Ag?, AR, A%, 4% for such layers are equal to zero in the Hooke’s law (11).
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a) b)

u,= 0 0
— u,# 0 lu+# O

u,=0; u.# 0

X X

Fig. 2. Cross-ply (a) and angle-ply (b) laminated structures and corresponding boundary conditions.

Consequently, the distribution functions of the stiffness characteristics set in the formulae (34) and (35) will
be also reduced to zero.

fie =he =F§ =F =0;  Big=By = Cig = Cys =0 (91)
In the case when the shell has a symmetrical structure about the mean surface, then additionally we have
Ci=Cp=Cp=C=0 (92)

The second case is angle-ply laminated structure (see Fig. 2b) formed with layers reinforced at the same
angles but opposite in sign (—0,+0) to the coordinate axes x; and x,. The layers of such a shell are an-
isotropic and all the stiffness parameters remain in the Hooke’s law (11).

In this case, of interest is antisymmetric structure through the thickness about the mean surface, that is,
each layer with fiber orientation (—6) has corresponded layer with respect to the main surface with fiber
orientation (40). For this structure the stiffness characteristics A(l?, A(Z?, Ag?, A‘((;), Ag;) of the given layers are
opposite in sign (antisymmetric), then from the formula (35) follows that Bjs = By, = 0, Cis # 0, Cys # 0.
Since the stiffness characteristics of the A(zﬁ), Ag?, ... type for the same layers have the same sign (sym-
metrical), then the relations (92) are also true.

Attention must be given that in both special cases we have the same ‘“zero” characteristics for
Bis = By = 0. We will use this property in the relations (35). First we consider cross-ply laminates. The
stiffness characteristics B, and By, are present in the third and fourth relations. As we also have
Cis = Cy6 = 0, then these relations are satisfied by equality (0 = 0).

For angle-ply laminates Cis # 0 and Cys # 0. It means, that the considered relations (35) will be iden-
tically satisfied if we have for the stresses 6(1/;) that x5 = K2, = 0. Similarly, in the expressions for stresses
ag;) K»1 = k11, = 0. Taking into account these relations in the expressions (40) for the transverse shear
stresses we obtain

o}y = pi o+ pT ot — (k1101 + K22,1€0§kg)) (93)
0%y = Py P + P 0% — (k22208 + 1120%)
These expressions are also true for cross-ply laminates, since after substitution of Eq. (91) into Eq. (39) we
obtain “zero” functions (pg? =ol) = (pﬁﬁ) = qog? = 0. Thus, the expressions for the transverse shear stresses
for both considered special cases are the same. Compared to Eq. (40), the simplified equations (93) retain
the relationship with the physical and mechanical characteristics of the anisotropic layers and, corre-
spondingly, transfer this relationship to the next relations, first of all to the transverse shear deformations.
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Let us now consider expressions (44) for the transverse shear deformations. In case of angle-ply lami-
nates they fully hold their form.

For cross-ply laminates we take into account the fact that agl;) = a(slj) = 0. Therefore, we obtain from
formulae (42) and (43)

k k k k
i SO S %)
Vi, =¥ =¥ =¥ =0
In accordance with formulae (94) and the expressions (45) for the transverse shear deformations are
simplified

26y = ria P+ w1 P+ pr Y+ pf Y (95)
26l = 112 WY + 102 WH + py W) + i P

The expressions (51) for the tangential displacements will contain, as in the general case, the distribution
functions through the thickness 1//1(1’;') which are determined accordingly to the relations (50) through the
distribution functions of deformations. We have in the case of cross-ply laminates

k k k k k k k k
‘Ma) = ‘p(m) = ‘pgl) = ‘péz) =0; lp§7) = lp(18> = %5) = g(j =0 (96)

For angle-ply laminates all the functions xﬁg’f) stay the same. It is noted that for both special cases we will
have the following distribution functions

k k k k) (k) (k) (k) (k)
WU U S s
Only in the case of angle-ply laminates the following even functions exist
(k) (k) (k) (k)
lp13 ’ l//14 ’ lp2l 7¢22
and odd functions
(k) (k) (k) ) (k)
Yz Vi Yas > g

In both cases the general expression for tangential displacements (51) and the functions of coordinate
surface set with the relations (52) and (53) stay the same. The expression for the tangential displacements
(54) of the non-classical theory is also unchanged. In this expression and in all other relations of the non-
classical theory the “zero” distribution functions must be taken account according to (96). Property of the
distribution functions lpﬁl’?, their eveness or oddness allow to find out which of generalized stiffness char-
acteristics, determined by formulae (75), for each considered laminates are “zero” and which are remained.

In Table 1 there are given those stiffness characteristics which are remained in the submatrices (81) of the
differential equations (76) for special cases: cross-ply and angle-ply laminates. The stiffness without upper
indices belong to both classical and non-classical theories and determine resistance of the laminated shell
when the transverse shear takes place.

The stiffnesses with upper indices p = 1, 2, 3, 4 therewith are constituents of submatrices of the left-hand
side of the system of differential governing equations (76). The stiffnesses with indices p =5, 6, 7, 8 are
constituents of submatrices of the right-hand side of this system.

By this means using the general form of the system of differential equations (76), its separate parts (80),
(82), (83), expressions for submatrices (81) and Table 1 we can compile the system of differential equations
for the special cases: cross-ply and angle-ply laminates.
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Table 1
Stiffness charecteristics of the laminated shell for the special cases
Cross-ply laminates Angle-ply laminates
Classic and non-classic Bi1, By, B, Bgs Bi1, By, Bis, Bes
theories Ci1, Cy, Cia, Ces Cis, C
D11, Dy, D1z, Des Dy, Dy, D12, Des
Non-classic theory p=1256 p=3,41728 p=1256 p=3,41728
fﬁp:1,2; 34 Billp)$ B(llzp)ﬁ Bég,) 3(222[7)7 B(lzzma Bézﬁp> Bézzp)! Bizzp)v Béz()p) Bgllp)v Bilzp)> Bélﬁp)
B(llép)7 351611) B(IZG:J)7 Bgzép)
arcp.cy  cpcp.cr areap o, o,
i e STNET
f=12 D(]1]f11!7)7 D(sl()flp) D(llzllzv)7 Dél(;f'lp) Dsll.f'lle)7 Dgﬂp)7 D(616“m D(llzﬁp)7 D%f'hﬂ)7 Délﬁ‘fzﬂ)
Rgls/ll’) Dé%ﬁp), Dilt;le’)7 D(lzé./lﬁ) Déiflp)’ D(léflp)7 D%fz”)
D/ p@rn)
R[(éﬂll), Rils/lp)
RV R
=34 D(112p2f)» Dé‘éplf') D;zzfzm, D%f'lp) D(llzpzf)7 Dglzplf)’ Dé‘épzf) D(lllflll)7 Dgzzﬁll)7 Dglf;f'lp)
Rﬁﬂp) DéZG/Vl/')7 D%éplf')7 D(226p2f> D(626/2117)7 DEIG./ZV)7 Dﬁ‘””)

(112)  p2fip)
D 26 ) D 26

@r2)  plasin)
R44 ) R45

(112)  p(1f1p)
R54 ) RSS

7.3. Analytical solutions for the special cases

One can be sure that the boundary conditions (88) for the case of hinged immovable support of the shell
expansions (89) and the load (90) will be really satisfied.

As to the kinematic conditions it is obvious, and the static conditions must be presented in the expanded
form accordingly to the expressions for the forces and moments (72)—(75). Comparing these expressions
with Table 1 we can see that the static conditions will be satisfied if their expressions hold the terms with the
stiffness characteristics which correspond to the case of angle-ply laminates.

As the conditions (88) for the hinged immovable support are satisfied with expansions (89), (90), for the
case of angle-ply laminates, admittedly, the system of differential equations (76) for this case will be also
satisfied using these expansions. In order to be sure in this we will use Table 1 for the transformation of the
general system (76) to the case of angle-ply laminates. Then we substitute the expansions (89) and (90) into
the obtained special system. After substitution we can see that some terms, namely, containing the curva-
tures of bending, impede the cancellation of trigonometric multipliers. That’s why we assume ky; = ky; = 0.

Therewith, the curvature k;, does not impede the system of governing algebraic equations to be formed.
Therefore, in the case of angle-ply laminates the solution for the shells with positive Gauss curvatures
(k11, k2 # 0) cannot be obtained. However, the solution exists for the shells with negative Gauss curvature
(k12 # 0,k1; = kxp = 0). This type of shells has a wide application in many engineering branches. Solution
for the plates (ki; = ks, = k1, = 0) can be also obtained as a special case.

Thus we obtain the system of linear algebraic equations for the given couples of parameters m, n in the
following general form

[Dmn]{Umﬂ} = [Dan}{an} + [an]{Pmn} (97)

where vector of Fourier coefficients of sought functions is given as follows
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{Unn} = {Un; Wi Xom} ', 1= 1,2 p=1,2,3,4 (98)
and vector of the given functions determined by the load accordingly to Eq. (51) is

o} = )} = {PL} i=1.2: p=5.67.8 9)
Vector of the directly given loads is

{Pmn} = {P¥ .Pan}T; = 172 (100)

imn?

Matrices of the coeflicients of the system of linear algebraic equations [D,,,], [Dxmn], [Fun] can be obtained by
transforming matrices of the system of differential equations [D], [Dy], [F], respectively, by substituting the
expansions (89) and (90) of the unknown and given functions into this system. In matrix [F] the following
new notations are used:

w=aa=a  Ya) =vyla) W) =),

The full system of governing algebraic equations is given in Appendix A, and for the case of the angle-ply
laminates the entire system is given in Appendix B.

The boundary conditions (85) for hinged movable support are satisfied by the expansion of the sought
functions (86) and load (87). Therewith, the static conditions can be satisfied only when their expressions,
written in accordance with the relations (71)—(74), retain the terms containing the stiffness characteristics
for the case of cross-ply laminates (Table 1).

The system of differential equations (76) for cross-ply laminates will be also satisfied with the expansions
(86) and (87). However, in doing so, it is necessary to cancel in the system some terms containing the
curvatures of torsion kyy, i.e. it is assumed that k;, = 0. Thus, in the case of cross-ply laminates we obtain
solution for the shells with positive Gauss curvature (ki1,k»n # 0,4, = 0), and in a special case for plates,
spherical and cylindrical shells.

The original form of the system of governing equations (97), vectors of sought functions (98) and loads
(99), (100) is unchanged. The elements of the system for the cross-ply laminates are given in Appendix C.

This system can be simplified in the case of the shell with cross-ply symmetrical structure through the
thickness. In this case the distribution functions of the tangential displacements 1//Yi>, 1//@, 1//2?, 1//2? turn out
to be odd and the functions wi?, le;) are even.

Solution of the system of algebraic equations for the Fourier coefficients of the sought functions, their
amplitudes for the given couples of m and n and further summation of the series accordingly to the given
law of the load allows to find the unknown functions. Then using formulae (54)—(60) all the components of
stress—strain state of the multilayered shell, in the given points on the surface and within the package of the
layers, can be found.

The refined values of transverse shear and normal stresses can be calculated using Egs. (21) and (22),
respectively.

8. Some results

Next we consider some analytical solutions and results for the bending problems in the cross-ply and
angle-ply laminated systems.

Problem 1. Let us consider the numerical results of the bending problem of plates depending on the fiber
orientation in the angle-ply laminates, and with different number of the layers. As an example we use the
material data from Savoia and Reddy (1992) for a unidirectional fiber-reinforced composite:
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E; =174.6 GPa Er =7 GPa
Gy =35GPa  Gp=14GPa (101)
Vit = Vi = 0.25

where L and T refer to the fiber direction and transverse direction, respectively. Three sets of laminates are
considered here:

(1) two-layer angle ply (—6, +6) laminates with layers of equal thickness (//2)
(2) four-layer angle ply (—6,+6, —6, +6) laminates with layers of equal thickness (4/4)
(3) six-layer angle ply (—0,+0, —0,+0, —0, +0) laminates with layers of equal thickness (4/6)

Here the angle 0 is measured from the positive x;-axis. Non-dimensionalized deflections and stresses are
presented according to the following definitions (Savoia and Reddy, 1992):

[ﬁ = ] _ [ul,uz}ET X 102 [ﬁ ] _ IOZETM3
e phS? ’ phS*
o1, 0n(a1/2,a,/2 _ 012(0,0
[G11,02) = [on 22(p~¥ 2/2)] G = lzpfsz ) (102)
_ 70'13(0,612/2) — 7623(31/2,0)
o3 =—"(g — 0y =—"Tg
pS pS

where S = a;/h. Normal load is distributed according to sinusoidal law and it corresponds to the coeffi-
cients m = n = 1 in expansion (95) and (89)
py = psin L sin 72 (103)
a a

The plates are square (a; = a, = a) and have side-to-thickness ratio a/h = 10. The numerical results are
given in Tables 2-4 and compared with exact 3D solution obtained by (Savoia and Reddy, 1992); with the
values obtained from the first order shear deformation theory (FSDT) proposed by Reddy and based on the
hypothesis of straight line; with the classical theory of plates (CTP).

The proposed rational theory of laminates is denoted as RTL. As seen from the tables, the results
obtained using RTL are in good agreement with 3D solution. The discrepancy is about 3% for the stresses.
FSDT gives deviation up to 15-20%, and CTP has large errors for the deflections: 1.5-2 times, despite the
fact that the considered plates are comparatively thin. The results for the case when 6 = 0 are given only in
Table 2 since for the rest of the cases they remain the same.

Problem 2. The influence of the fiber orientation in the angle-ply laminates on deflections and stresses
a11,013 for the plates from the previous problem, is shown in Fig. 3a and b.

The results are given for the six-layered plate. The deflections wy,,x and normal stresses G,.x = 01; are
given at the center of the plate, and the transverse shear stresses G, = o3 in the middle of the sides. All the
considered values have their minimum for the angle 6 = 45°. This is especially true for the normal stresses
which drop almost threefold. The deflections and the transverse shear stresses are not decreasing so rapidly,
only 1.3-1.5 times.

Problem 3. Of interest the study of the dependence between the deflections on the one hand and the stresses
on the other hand for the given fiber orientation depending on the number of the layers. Table 5 gives such
results for a square plate with side-to-thickness ratio a/# = 10 and fiber orientation (—30°/30°).

It can be noted that with increase in the number of layers from 2 to 32 the dimensionless deflections Wy,ax
decrease approximately 1.8 times, and the stresses @y, 61, 1.5 times. The results change steeply when
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Table 2
Maximum deflections and stresses in a laminated square two-layered anisotropic plate (a = 104)
0 ThCOI'y w o1 () O12 013 023
0 3D 0.6348 0.5671 0.03567 0.02556 0.4222 0.04644
RTL 0.6371 0.5701 0.03474 0.02575 0.4225 0.04548
FSDT 0.6383 0.5248 0.03386 0.02463 0.4315 0.04594
CTP 0.4313 0.5387 0.02667 0.02128 0.4398 0.03766
15 3D 0.8027 0.5633 0.08062 0.07498 0.3418 0.08138
RTL 0.8037 0.5701 0.08029 0.0759%4 0.3413 0.08058
FSDT 0.8072 0.5330 0.07594 0.7445 0.3447 0.08160
CTP 0.6205 0.5436 0.07276 0.07028 0.3493 0.07703
30 3D 0.8568 0.4204 0.1696 0.1837 0.2699 0.1570
RTL 0.8493 0.4258 0.1707 0.1874 0.2704 0.1570
FSDT 0.8584 0.4044 0.1615 0.1799 0.2729 0.1581
CTP 0.6842 0.4063 0.1614 0.1790 0.2735 0.1575
45 3D 0.8250 0.2594 0.2594 0.2408 0.2154 0.2154
RTL 0.8136 0.2625 0.2625 0.2452 0.2155 0.2155
FSDT 0.8284 0.2498 0.2498 0.2336 0.2174 0.2174
CTP 0.6547 0.2498 0.2498 0.2336 0.2174 0.2174
Table 3
Maximum deflections and stresses in a laminated square four-layered anisotropic plate (a = 10A)
0 Theory w o1l 02 012 013 023
15 3D 0.6150 0.4453 0.06153 0.06739 0.4116 0.1074
RTL 0.6001 0.4381 0.05886 0.07102 0.4149 0.1102
FSDT 0.5839 0.3977 0.05429 0.06592 0.4228 0.1116
CTP 0.3999 0.4090 0.05171 0.06158 0.4285 0.1055
30 3D 0.5619 0.2833 0.1115 0.1331 0.3381 0.1995
RTL 0.5290 0.2760 0.1068 0.1350 0.3447 0.2037
FSDT 0.4885 0.2413 0.09346 0.1183 0.3543 0.2092
CTP 0.3144 0.2431 0.09347 0.1174 0.3550 0.2084
45 3D 0.5430 0.1749 0.1749 0.1642 0.2684 0.2684
RTL 0.5063 0.1708 0.1708 0.1627 0.2745 0.2745
FSDT 0.4549 0.1458 0.1458 0.1388 0.2841 0.2841
CTP 0.2813 0.1458 0.1458 0.1388 0.2841 0.2841
Table 4
Maximum deflections and stresses in a laminated square six-layered anisotropic plate (a = 10k)
0 Theory w o1l 02 o2 o3 023
15 3D 0.5781 0.4295 0.05838 0.06887 0.3696 0.09813
RTL 0.5717 0.4293 0.05683 0.07257 0.3668 0.09739
FSDT 0.5589 0.3904 0.05252 0.06738 0.3752 0.09885
CTP 0.3752 0.4021 0.05003 0.06287 0.3808 0.09320
30 3D 0.5087 0.2662 0.1037 0.1290 0.2957 0.1749
RTL 0.4942 0.2685 0.1031 0.1342 0.2916 0.1724
FSDT 0.4599 0.2362 0.09079 0.1183 0.2989 0.1764
CTP 0.2858 0.2380 0.09081 0.1174 0.2996 0.1757
45 3D 0.4890 0.1640 0.1640 0.1548 0.2355 0.2355
RTL 0.4725 0.1667 0.1667 0.1593 0.2318 0.2318
FSDT 0.4281 0.1435 0.1435 0.1372 0.2378 0.2378

CTP 0.2544 0.1435 0.1435 0.1372 0.2378 0.2378
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Fig. 3. (a) Displacements in a six-layered angle-ply square plate vs fibre orientation. (b) Stresses in a six-layered angle-ply square plate
vs fiber orientation.

Table 5
Maximum displacements and stresses in angle-ply (6 = £30°) laminated square plates (¢ = 104) with different number of layers

No. Theory w A, % 011 A, % 012 A, % 013 A, %

2 3D 0.857 - 0.420 - 0.184 - 0.270 -
RTL 0.849 0.9 0.426 1.4 0.187 1.6 0.270
FSDT 0.858 0 0.404 3.8 0.180 2.2 0.273 .1
CTP 0.642 25 0.406 3.3 0.179 2.7 0.274 1.5

4 3D 0.562 - 0.283 - 0.133 - 0.338 -
RTL 0.529 5.9 0.276 2.5 0.136 23 0.345 2.1
FSDT 0.489 13 0.241 15 0.118 11 0.354 4.7
CTP 0.314 44 0.243 15 0.117 12 0.355 5.0

8 3D 0.490 - 0.264 - 0.130 - 0.303 -
RTL 0.483 14 0.269 1.9 0.135 3.8 0.303 0
FSDT 0.451 8 0.237 10 0.120 7.7 0.312 3
CTP 0.277 44 0.239 10 0.119 8.5 0.313 33

16 3D 0.473 - 0.268 - 0.135 - 0.294 -
RTL 0.472 0.2 0.274 22 0.140 3.7 0.294 0
FSDT 0.443 6.3 0.243 9.3 0.124 8.1 0.303 3.1
CTP 0.269 43 0.244 10 0.123 8.9 0.304 34

32 3D 0.468 - 0.274 - 0.139 - 0.292 -
RTL 0.467 0.2 0.277 1.1 0.141 1.4 0.292 0
FSDT 0.441 5.8 0.247 10 0.127 8.6 0.298 2.1
CTP 0.267 43 0.248 10 0.126 9.4 0.299 2.4

Note: the discrepancy with 3D theory is given as an absolute value.

passing from two-layer to four-layer laminates. The deflections decrease almost 1.5 times, and then with
increase in the number of layers to 8 they remain approximately at the same level, i.e. the result stabilizes.
The tangential stress also decrease sharply, 1.5 times, when passing from two-layer to four-layer lami-

nates.
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Unlike the tangential stresses the transverse shear stresses o3 grow 1.25 times on passing from 2 to 4
layers, and then, with increase in the number of layers above 8 remain at the same level.

Hence the eight-layered system is marginal to stabilize the result.

Decrease of the deflections, which are integral characteristics of the deformed condition, with increase in
the number of layers speaks for increase in general stiffness of the system with uniformly distributed ma-
terial through the thickness starting from eight layers. The system with eight layers and more can be
considered as “quasi-homogeneous”.

Growth of the general stiffness with increase in the number of layers leads also to lessening of the
tangential stresses. However, for the stresses, as for “local characteristics” reaching the “quasi-homoge-
neous” condition by the system has more significant effect as the “peaks™ in the diagram of the stresses
smooth out with increase in the number of layers.

Next we consider an interesting phenomena which is essential for accuracy of the calculation results of
plates with different numbers of layers (Table 5).

It is observed that two-layered plate has the least error comparing with the exact 3D solution. And
FSDT practically gives an exact value for the deflection; RTL has error of the order of 1%; CTP — 25%.

All the theories give much the same values for the stresses. The most errors were obtained for the four-
layered laminates. Thus we have for the deflections and normal stresses the following errors, respectively:
RTL - 6% and 2.5%; FSDT — 13% and 15%; CTP 44% and 15%. The stabilization of the errors corresponds
to the stabilization of the results. The maximum errors for the two-layered plate agree with the results given
in Savoia and Reddy (1992).

Problem 4. The analysis of the deflection and stress diagrams for two-layered and four-layered laminates
shown in Fig. 4.

The tangential displacements u;(0,a,/2) virtually follow the linear distribution law through the thick-
ness. It is in complete agreement with the kinematic model of FSDT, hence the minimum of errors, when
using this theory, and also FTL and CTP. The distribution law for the displacements and stresses trough
the thickness for the four-layered plate is distinguished by considerable heterogeneity. Computing errors for
such structure are the highest.
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Fig. 4. Displacement and stress diagrams for two- and four-layered laminates.
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With the number of layers above 4 the effect of “quasi-homogeneity” is achieved and the errors decrease
and stabilize. However, as a whole they do not reach those minimum values which we have for the two-
layered system.

Fig. 4 shows general regularities of the stress and displacement distribution. The tangential displace-
ments #; in the middle of each side are asymmetrical through the thickness of the plate in a direction to the
edge. The displacements #, are symmetrical in the plane of the plate ends. The tangential normal stresses @,
have discontinuities on the layer interfaces because of different mechanical characteristics. These and also
the tangential shear stresses G, are asymmetrical through the thickness. The transverse shear stresses 73
acting in the plane of the plate ends are symmetrical through the thickness and stresses @,; are asymmetrical
about the normal to the ends.

Symmetry through the thickness of the plate of the displacements #,, stresses 6, and antisymmetry of
stresses a3 are resulted from the asymmetrical structure of the laminates trough the thickness of the plate.

Problem 5. Here an optimal design problem is presented. This is the problem of optimal equal-stress design
in angle-ply rectangular plates:

optim0(G11 max = G22max, @1/a2) (104)

This problem is considered for the eight-layered laminated structure. The layers have the equal thicknesses
h/8. A length of one of the plate sides is constant (a; = 104). A length of another side is varying (a; > a,).
The angle 6 is varying too (0° < 6<90°). The layer elastic coefficients are given by (101). The sinusoidal
loading is applied to the plate to correspond with (103). The tangential normal stresses @ max and 2 max
take place at the center of the plate (x; = a,/2,x = ay/2).

The results of design are shown at the Fig. 5. The curves of the (G| max, G22max) Stresses have one point of
the intersection for the relative short plates (a;/a, <4). Two points of the intersections are occurred for
long plates (a;/a; > 4).

Fig. 5. Optimal equal-stress design of eight-layered angle-ply rectangular plates (a; = 10A).
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The curves connecting points of the equal stresses correspond to the optimal solution. The optimal
angles lie within the following bounds: 0° < § < 10° and 38° < 0 < 43° for the long plates; 38° < 0 < 45° for
short plates. The equal-stress design gives the possibility to design full-strength laminated structures.

9. Summary and conclusions

A rational higher-order shear deformation theory of anisotropic laminated plates and shallow shells is
developed for the solution of static problems subject to both normal and tangential loads. There are three
distinctive properties of the proposed theory. First one lies in the fact that it is based on hypotheses which
are fully tied to the elastic characteristics of the anisotropic materials of the layers. Secondly, the theory is
built on a rational level of difficulty, i.e. it does not add complexity in comparison with known theories of
this type and with the theory of orthotropic layered systems. Thirdly, the hypotheses and, correspondingly,
all governing relations take into account the influence of the direct application of the tangential loads.

Based on the special approach for the derivation of hypotheses where the boundary conditions are
satisfied ““step-by-step’’ on the external surfaces, all the relations of the stress—strain state of the anisotropic
laminated shallow shell were obtained. Using the variational approach the equilibrium and the boundary
equations are derived. The system of differential equations for the sought functions of displacements and
transverse shear is also obtained.

The system takes into account the given shear functions determined by the external tangential loads. The
order of the system does not depend on the number of layers in the shell since the theory is of “continu-
ously-structural” type.

The possibility of analytical solution of the system of the governing differential equations in double
trigonometric Fourier series is studied. It was determined that in the case of arbitrary shell structure with
the anisotropic layers the solution does not exist.

The special cases for which such solution exists are stated: cross-ply laminates for the shallow shells of
double positive Gauss curvature with arbitrary stacking sequence; angle-ply laminates for the shallow shells
of negative Gauss curvature with asymmetrical lamination through the thickness. These solutions were
obtained as special cases of the general solution.

The numerical results for some problems are given. Special attention is given to the angle-ply laminates.
A comparison between the proposed RTL theory and exact 3D solution are in very good agreement.

The influence of the fiber orientation of the composite on characteristics of the stress—strain state of
plates with different numbers of layers. The parameters were determined for which the stress—strain state
and accuracy of the solution stabilizes, for the given overall thickness of the laminated system. A “phe-
nomena’’ of the high accuracy of the results for the two-layered angle-ply plate is discussed. The behaviour
of the variation of the stresses and displacements through the thickness of the asymmetric laminated
structure is studied.

The optimal fiber orientation are solved such that the maximum normal stresses are equal, where the
aspect ratio of the plate is also design variable and important to design the equal-strength plate structure.

Summarising the results presented in this paper, it is noted that the proposed rational shear deformation
theory of the anisotropic laminated shells and plates can lead to a substantial improvement of the accuracy
in the following and practical problems:

1. application of numerical methods for the general theory of the anisotropic laminated shells,

2. investigation of the stress—strain state of the anisotropic laminated and, in particular, angle-ply lami-
nated shells of negative Gauss curvature,

3. optimal design of plates and shells with anisotropic layers for practical application in different engi-
neering branches.
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Appendix A

The system of governing algebraic equations.
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